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ABSTRACT

An important share of the consumer electronics market is
focused on devices capable of running multimedia applica-
tions, like audio and video decoders. In order to achieve
the performance level demanded by these applications, it is
important to develop specialized hardware IPs in order to
cope with the most computational intensive parts. Nowa-
days, designers are facing the challenge of integrating sev-
eral components, including processor, memory, and special-
ized IP cores, into a single chip, giving raise to the so called
Systems-on-chip (SoC). The high complexity of such sys-
tems and the strict time-to-market in the electronics indus-
try motivated the introduction of new design methodologies
during the last years. This work presents a comparison be-
tween two hardware development methodologies in order to
design a Theora video decoder IP core from algorithm down
to FPGA. We first implemented it in hand-written RTL code
using VHDL, resulting in a 56% time reduction in the de-
coding process when compared to a software library. The
second methodology implements the same hardware using
SystemC and behavioral synthesis. The second IP core was
developed in 70% less time with satisfactory results. We
compare the two approaches in terms of area and latency.

1. INTRODUCTION

Since the last decade, the electronics industry has been chal-
lenged by the complexity growth of their systems and by a
tight time-to-market. Consequently, new methods and tech-
niques for hardware implementation have been developed.
In this paper, a comparative study between two hardware
design methodologies for a Theora [1] video decoding IP is
shown: the first one is a hand-written implementation com-
pletely programmed in VHDL [2]; the second one is based
on behavioral synthesis of a SystemC [3, 4] model directly
to Verilog RTL, VHDL RTL or gate-level using a tool called
Cynthesizer, by Forte Design Systems[5].
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Decoding a Theora video is a nontrivial task and it re-
quires significant computational processing, making a soft-
ware based decoding process prohibitively slow for real-
time video applications on embedded systems. In this way,
decoding video with hardware assistance is particularly in-
teresting and it provides a way to develop embedded systems
that are able to decode videos in real-time using reasonable
computational resources.

This paper is organized as follows: section 2 shows re-
lated works; section 3 explains briefly the encoding and de-
coding of a Theora video and describes the implemented
modules; section 4 presents the design methodology; sec-
tions 5 and 6 report the VHDL and the SystemC implemen-
tation, respectively; and section 7 discuss the results.

2. RELATED WORKS

Hardware and software co-implementation has been used
to speed up MPEG-4 [6] videos and to improve computa-
tion performance on computer graphics algorithms [7]. So,
Diniz, and Hall [8] have developed a compilation system
that translates from high level algorithms programmed using
SystemC to specific FPGA systems. However, their bench-
mark was made using small applications as, for example,
matrix multiplication. Chtourou and Hammami [9] have
developed a methodology for behavioral synthesis of Sys-
temC code. They evaluated small applications, such as, Fast
Fourier Transform.

This work differs from the above mentioned research
due to its focus on analyzing the performance of a complex
IP core designed using both the classical approach devel-
oped with RTL VHDL, and a more recent high-level method-
ology based on behavioral synthesis using SystemC. Not
only do we show that a hardware/software co-implementation
of Theora decoder brings a large speed up on design time,
but also, we present the flexibility and optimization possi-
bilities brought by the higher level of abstraction.



3. THEORA ARCHITECTURE

Theora video compression is done following steps that re-
move redundancy in the spatial, temporal, and frequency
domains[10].

In order to remove spatial and frequency redundancy, the
first step consists on dividing the color planes of a frame in
matrices of 8x8 elements. On the second stage, the type
II discrete cosine transform (DCT [11]) is applied on each
block, separately. The third step, which is called quanti-
zation [12], removes the redundancy on the frequency do-
main by cutting down high frequency components from the
frame. The fourth step linearizes the sixty four elements of
the matrix in a zig-zag way. The fifth stage applies the Huff-
man [13] algorithm. These five steps remove redundancy of
spatial and temporal domains. When a frame is encoded as
described before, it is called as a golden frame or an intra
frame, depending on how an inter frame refers to it. Theora
makes predictions just based on former frames, to encode an
inter frame. This technique consists on subtracting the cur-
rent frame from the frame used as predictor, encoding just
the differences or minimizing the differences between cur-
rent frame regions and reference frame regions. Thus, the
difference is encoded in the same way of an intra frame and
for the latter case, a shifting vector that describes how the
difference must be shifted is kept, too. The reverse process
is called decoding. When it finishes, the frame is completely
decoded and ready to be displayed.

We used a profiling tool called gprof [14] to analyze the
Theora library version alpha 6, running on a x86 platform.
This analysis showed us which functions should be imple-
mented in hardware, due to the effort spent by the software
on them. We chose Reconstruct, LoopFilter, and their re-
lated functions because they accounted for up to 70% of
all decoding time. Most of them had their behavior com-
pletely implemented in hardware. The exception is Recon-
RefFrames, which is divided in two parts. We chose to keep
one part in software because of the lack of data processing.
This part of ReconRefFrames just makes some decisions on
which parameters must be forwarded to hardware. Figure 1
shows the architecture of these modules.

ReconRefFrames
ExpandBlock

.-

Fig. 1. Theora Modules
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A module called iDCT receives blocks of 8x8 pixels
coded as a quantization matrix. The blocks represent the
coefficient resulting from DCT evaluation on a block of pix-
els that has not been decoded yet. At first, iDCT module

must dequantize the coefficients that were received. Next, it
does the iDCT based on these coefficients. The result is a
block of pixels similar to the original that is sent to the next
module in the chain, ExpandBlock.

ExpandBlock is responsible for deciding which proce-
dures must be applied depending on the frame type. It re-
constructs and decodes a block of pixels.

LoopFilter is a module that soften defects. It applies to
the reconstructed frame a non-linear function that blurs the
edges of the blocks giving a better appearance to the video.
Theora video frames have a border that is not displayed. It
exists to protect LoopFilter from accessing an invalid buffer
region. After the application of LoopFilter, invalid values
are left in this border. The UpdateUMYV module restores
this area.

The ReconFrames module is responsible for applying
the ExpandBlock function on the frame until all necessary
blocks have been reconstructed. CopyRecon is a module
that copies a reconstructed frame to another buffer region
depending on an offset parameter.

ReconRefFrames receives parameters from the software
and forwards them to the IP modules. It is responsible for
managing all other modules in the Theora IP core.

Some software optimizations that are used in the Theora
software implementation can be replaced with generic im-
plementations since, in hardware, these functions would not
increase the performance. Besides, in order to save mem-
ory, we replaced matrices that kept pre-processed values by
modules that process them on-the-fly.

4. METHODOLOGY

We have independently developed, tested, and validated each
module of the theora video decoder. We used the libthe-
ora software library as a reference model. For verification
purposes, each function that was ported to hardware had its
input parameters generated by its software implementation
and written on an input file. A wrapper module was used
to sent these inputs to the modules. In addition, data modi-
fied by the modules were kept on files and used to compare
outputs against the reference model.

Our goal was to compare the effort and performance of
a Theora IP core designed following two different method-
ologies. We first adopted the hand-written RTL approach,
using the VHDL language to design the hardware modules.
In contrast, we used the SystemC [3, 4] language along with
Cynthesizer behavioral synthesis tool by Forte Design Sys-
tems [5] for the second approach.

For practical purposes, in the behavioral methodology
we coded all Theora functions into a single module which
is fed to Cynthesizer for RTL synthesis. We have gradually
designed this single module, starting by iDCT and going to-
wards the end of the decoding process, following the same



architecture adopted by the RTL.

A testbench [15] is responsible for verification and vali-
dation. The Theora software library compiled for x86 is our
reference model. The same testbench structure was applied
to VHDL, SystemC, and FPGA tests. The reference model
generates inputs for a component and saves them on a file
called IN.TB. It also keeps the outputs on another file called
OUT.EXPECTED.

Simulation requires the development of some modules
that are not synthesized. These components read the in-
put files and forward the data to the components under test,
which we call design under verification (DUV), using 32 bit
packages. When a DUV component is done with its work,
it sends the output data to the testing module which writes
them on a file called OUT.DUV. These files are compared
with the reference (OUT.EXPECTED) ones. The verifica-
tion process is successfully finished if they are equal, which
means that the hardware coded with VHDL or SystemC has
the same behavior as the software reference model. Figure
2 illustrates how this process works.
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Fig. 2. Verification Methodology: Simulation and FPGA

This methodology is also used for validation of the RTL
design on FPGA. In this design stage, the Altera NIOS II
processor receives output data from the top-level module
and it forwards them to a JTAG interface connected to a
computer that records them on a file called OUT.DUV.

5. THE RTL DESIGN

A bus connected to the top-level module does the communi-
cation between the hardware and the software. A YCbCr to
RGB converter implemented in VHDL receives the output
from the top-level module. Hence, it is possible to display
an image on a VGA monitor. Figure 3 shows the architec-
ture.

Beginning with ReconRefFrames, all modules were syn-
thesized and completely tested on FPGA. Altera Stratix II
EP2S60F672CSES was used. The hardware was synthe-
sized and connected to a NIOS II processor using an Avalon
Bus. The Theora IP acted as a NIOS II peripheric and could
be accessed by a software running on this processor. The op-
eration frequency was SOMHz and the software was a cus-
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Fig. 3. Complete Hardware Architecture

tomized Theora library in which the functions converted to
hardware were replaced by calls to the IP core.

6. THE BEHAVIORAL DESIGN

Behavioral SystemC code is close to the algorithm form of
the reference model that was implemented using a high level
language. As higher is the abstraction level, as easier is to
explore different design possibilities. Hence, more hard-
ware varieties can be tried without being concerned about
the hardware description. Design exploration is much faster.
Changes are done in the algorithm, abstracting the low level
of a hardware description. It is possible to completely change
the algorithm without spending a long time repairing the
RTL. Thus, there is more freedom for development.

The RTL code is difficult to maintain and reuse because
it describes a module in an very low abstraction level, with
too many details and a structure very close to the generated
hardware. The code tends to become huge and complex.
Also, implementation decisions might turn the code depen-
dent on factors like FPGA technology (or ASIC) used for
synthesis of the modules.

In the behavioral synthesis approach, the development
and the synthesis process become more dynamic, allowing
more design variations with a variety of structural decisions
without increasing development time and cost. For our The-
ora IP, these different implementations were tested and com-
pared to the RTL VHDL implementation shown on section
5.

We use a tool called Cynthesizer, developed by Forte
Design Systems [5]. It is able to convert a behavioral Sys-
temC code into SystemC RTL, Verilog, or VHDL. This tool
requires some constraints in order to synthesize the behav-
ioral SystemC code. Although these rules create some limi-
tations, there is more freedom than coding in RTL. We show
some of the rules that should be followed below. Readers
that are not familiar with SystemC should refer to [16, 17]



in order to be able to fully understand the meaning of these
constraints.

e The design must be represented as a SC_.MODULE
with only one SC_.CTHREAD and the algorithm func-
tionality must be implemented as an infinite loop nested
on SC_CTHREAD.

e One cycle initialization data must be implemented on
Reset phase. Multi-cycle initialization must be imple-
mented inside the SC_CCTHREAD.

e The input/output handshake must be implemented nested

to a SC_.CTHREAD in a cycle-accurate manner. Its
behavior is defined using the SystemC wait () com-
mand.

e Dynamic memory allocation and complex function calls,

as for example sqrt (), are forbidden. Also, OO
programming features available on C++ are not per-
mitted.

In addition, Cynthesizer defines a code style that should
be followed on the SystemC code. Nevertheless, program-
ming the algorithm that will be inside the SC_.CTHREAD is
not as complicated as programming the RTL. While and
for loops are permitted. Vectors are automatically con-
verted into memory. The program can access the memory
as if it were a C program. The programmer does not need to
worry about clock cycles and read or write states. Figure 4
shows a sample code.

void my_modulo::threadO() { 0

int i;

// initialization logic

{ CYN_PROTOCOL( "Reset" );
// one cycle initialization signals
wait();

}

// Multi-cycle initialization

// main loop
while (1) |
{ CYN_PROTOCOL ("Input");
// Input managed by the clock
}
// Evaluations
for (i=0; i < 4; i++) {
CYN_UNROLL (COMPLETE, 4, "mem_ini");
r(i] = i;

}

Fig. 4. Code Example

The synthesis process using Cynthesizer is different
from the regular approach that has been adopted up to now.
At first, the tool converts the behavioral SystemC code to
a SystemC RTL code. Then it translates the latter into a
Verilog RTL code, respecting the operation schedule in each
clock cycle. In this process, the designer can try many possi-
bilities for the state machine elaboration by setting optimiza-
tion parameters, like enabling loop unrolling or requesting
the tool to allocate the resources in a pipelined way. Also,

there are other restrictions like maximum latency and min-
imum output flow that may be configured. When these pa-
rameters are set, the tool tries to satisfy all the restrictions.
However, the clock cycles used during the handshake are
constant and they should be defined by the designer because
the tool does not change them. In addition, there are other
options such as inference of synchronous memory or regis-
ter banks from vectors.

Varying these parameters, the designer can try different
structure combinations. By analyzing reports created by the
tool, he/she can choose which one is the best for the design.
For example, if a module needs to be fast, the combination
with the highest output flow speed is chosen. It might be
a pipelined implementation. On the other hand, if area is a
key concern, the fastest option will probably be prohibitive
large in area, but one with a good trade off between area and
performance may be obtainded by fine tuning the synthesis
paramenters.

Tool constraints which restrict the usage of dynamic
memory, pointers, and so on has caused changes on the li-
brary that we used. We have replaced all the pointer access
with static memory use. Because we have substituted vec-
tors that keep pre-processed data by functions that calculate
their result on-the-fly on the RTL code, we have adopted the
same strategy here to ensure a fair comparison. Therefore,
the behavioral SystemC code is not the same as the Theora
software library, but it is very similar.

We have created a testbench in the same way we have
done for the RTL. It reads an input file and generate an out-
put file. The process of verification follows the same rules
described on section 4.

7. EXPERIMENTAL RESULTS

In this section we present a comparison between the co-
implementation developed in RTL VHDL and the software
library running on FPGA with the Nios II processor to
demonstrate the results on performance gain for this ap-
proach. Also, we show a comparison between the hardware
developed in RTL VHDL and Behavioral SystemC using
simulation.

In order to compare performance between the decoding
process done totally by software and the decoding process
done by the HW/SW co-implementation, we have developed
a system that has a Nios II processor and YCbCr to RGB
converter module that is connected with an Avalon bus. The
data flow from the processor to the converter without using
Theora hardware decoder. We have compiled Theora library
to the Nios II processor. All decoding process is done by
software. Figure 5 shows the architecture.

We used 50 MHz as the maximum frequency opera-
tion. As a result, both architectures must work on this fre-
quency. We have used a video of 35 seconds and 96x80 pix-
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els. The video size is small due to FPGA internal memory
constraints. The video was encoded in a range of bit-rates
from 56 kbps to 686 kbps. Thus, we can evaluate the results
for videos of different qualities. Table 1 shows the decode
time for a video decoded by software and by our HW/SW
co-implementation decoder.

. Time (s)
zi'lt)rpast)e ear | Without With | %
Hardware | Hardware

56 35 22 15 | 48

91 35 26 17 | 51

182 35 33 23 | 46

364 35 44 33 | 36

636 35 61 48 | 27

Table 1. Decoding Comparison

Variation Area Latency
(mm?) | (cycles/block)
RTL 11.40 1021
C_BASIC 7.35 1934
C_UNROLL_IDCT 8.35 1757
C_UNROLL_LF 8.07 1933
C_UNROLL_RF 7.45 1787
C_UNROLL_CRI1 7.36 1796
C_UNROLL_CR2 7.29 1766
C_UNROLL_-UMVB 7.84 1843
C_UNROLL_IDCT_RF 8.55 1610
C_UNROLL_IDCT_RF_CLR 8.64 1603
C_UNROLL_IDCT_RF_CR2 8.73 1413

Table 2. Synthesis results

Table 2 shows that not only is the hardware able to has-
ten the process in approximately 40%, but also it can de-
code a 364 kbps video in real time. Only Nios II running at
50 MHz and without any hardware assistance cannot decode
videos with a bit-rate grater than 182 kbps. Hence, if high
bit-rate videos must be decoded on an embedded system, a
hardware assistance is necessary.

We did several synthesis alternatives in order to explore
the range of possibilities available in Cynthesizer. We tested
them in the most critical regions of the decoder where less
latency is more likely to be affected. The most common pa-
rameter that we used was CYN_UNROLL. This option does
complete or partially loop unrolling, therefore, reducing la-
tency because of an increase in parallelism. Below, a brief
description of each synthesis variation.

e C_BASIC: Standard synthesis configuration.

e C_UNROLL_IDCT: iDCT loops are unrolled

e C_UNROLL_LF: LoopFilter loops are unrolled

e C_UNROLL_RF: ReconFrames loops are unrolled

e C_UNROLL_CRI1: Internal CopyRecon loops are un-
rolled

e C_UNROLL_CR?2: External CopyRecon loops are un-
rolled

e C_UNROLL_RF: UpdateUMYV loops are unrolled

e C_UNROLL_IDCT_RF: ReconFrames and iDCT
loops are unrolled

e C_UNROLL_DCT_RF_CLR: ReconFrames, iDCT,
and memory initialization loops are unrolled

e C_UNROLL_IDCT_RF_CR2: ReconFrames, iDCT,
and external CopyRecon loops are unrolled

Table 1 shows the area and the latency of the RTL and
of each behavioral synthesis variation. In order to obtain the
area of the RTL design, we used Cadence RTL Compiler
[18] and Cynthesizer to acquire the areas of the behavioral
synthesis. We measured the latencies by counting the num-
ber of clock cycles spent to decode a frame and dividing it
by the number of blocks on a frame.

The synthesis have different areas and latencies. To de-
pict the range of possibilities, we plotted a graph shown in
Figure 6. Each point represents one synthesis. As close to
the origin as better is the design because we want to min-
imize the latency and the area. The most striking point is
C_UNROLL_CR2, which has the lowest latency and area.

The tool did not allow us to try more variations because
they became too complex, exhausting the computer memory
during the synthesis process. As a consequence, we were
unable to synthesize a design with the same or better latency
as the hand-written RTL. If it were possible, probably the
synthesized circuit would consume less area than the RTL.
This conclusion is reinforced if we do an extrapolation on
the graph.

In addition, the time that we spent developing the behav-
ioral model was 3 times faster, and obtaining several RTL
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design alternatives, instead of just one. This fact shows that
the behavioral synthesis is a flexible and efficient way for IP
core design.

8. CONCLUSION

This paper shows two hardware implementations for The-
ora video decoding: one using hand-written RTL VHDL
and another one using behavioral SystemC synthesized with
Forte Cynthesizer tool. Both of them are based on HW/SW
co-implementation concept. We synthesized the former on
FPGA and compared it with a pure software decoding li-
brary.

By comparing both approaches, we have shown that
hardware IP design using behavioral synthesis can enable
design space exploration in a way that is impossible to
achieve using hand-written RTL code. By adjusting the op-
timization parameters on the synthesis tool, we could de-
velop a number of design variations in one third of the time
spent to write a RTL VHDL model for the same IP core.
However, the RTL VHDL hardware is 38% faster than the
quickest IP synthesized from the behavioral SystemC. The
RTL was coded to ensure a low latency. On the other hand,
minimizing the area is the default goal of the behavioral syn-
thesis tool. Despite of its great performance, the amount of
area occupied by the hand-written RTL (30% greater than
the largest behavioral SystemC variation) would probably
be unrealistic for a real-world embedded system design. By
applying the optimization techniques in the behavioral syn-
thesis tool, the designer is capable of seeking a good com-
promise between area and latency in a reasonable amount of
time.
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