Assessing Computer Performance with SToCS

[Work in Progress Paper]

Leonardo Piga, Gabriel F. T. Gomes, Rafael Auler, Bruno Rosa, Sandro Rigo, Edson Borin
Institute of Computing, University of Campinas, Brazil
{leonardo.piga,gabriel.ferreira,rafael.auler,bruno.rosa}@lsc.ic.unicamp.br, {sandro,edson}@ic.unicamp.br

ABSTRACT

Several aspects of a computer system cause performance
measurements to include random errors. Moreover, these
systems are typically composed of a non-trivial combination
of individual components that may cause one system to per-
form better or worse than another depending on the work-
load. Hence, properly measuring and comparing computer
systems performance are non-trivial tasks.

The majority of work published on recent major computer
architecture conferences do not report the random errors
measured on their experiments. The few remaining authors
have been using only confidence intervals or standard de-
viations to quantify and factor out random errors. Recent
publications claim that this approach could still lead to mis-
leading conclusions.

In this work, we reproduce and discuss the results ob-
tained in a previous study. Finally, we propose SToCS, a
tool that integrates several statistical frameworks and facil-
itates the analysis of computer science experiments.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Measurement techniques;
G.3 [Probability and Statistics|: Experimental design,
Nonparametric Statistics

Keywords

Performance Analysis, Statistics, Hypothesis Tests

1. INTRODUCTION

Computer performance measurement is subject to random
and systematic errors. Mytkowicz et al. [15] show that the
code layout produced by assemblers and linkers may impact
hardware mechanisms, such as cache memory and branch
predictors, in non-deterministic ways. Lilja [11] states that
several other factors influence the measurement of computer
performance, for example the precision of the measuring

tools. In order to assist experimenters in the analysis of ran-
dom errors in the measured data, we propose SToCS (Statis-
tical Tool for Computer Science) [13], a tool that integrates
several statistical frameworks and facilitates the analysis of
computer science experiments.

Another problem faced when assessing computer perfor-
mance is the summarization of performance metrics col-
lected for individual benchmarks in a suite (e.g. SPEC
CPU 2006). Several metrics have been proposed, leading
to decades of debates. This became known as the “War of
the benchmark means” [14], where several authors discussed
about which summarization technique better describes the
overall performance of a computer across benchmarks [8,9].
We evaluate these metrics with data collected from the ex-
ecution of benchmarks on real machines and with synthetic
data and observe that these metrics provide similar results
in our experiments.

More recently, Chen et al. [7] argued that parametric sta-
tistical techniques should not be used when assessing com-
puter systems performance data and introduced a hierarchi-
cal performance test framework (HPT) that applies consecu-
tive statistical hypothesis tests on the performance scores of
two computing systems. The framework reports how much
a system is faster than the other and with which confidence
level. Our results indicate that HPT is conservative when
compared with other summarization techniques.

Last, Lilja states that the analysis of computer systems
performance should be thought of as a combination of mea-
surement, interpretation, and communication [11]. Accord-
ing to the American Physics Society, the success and credi-
bility of science rely on the exposition of ideas and results to
independent testing [1]. We suggest that providing the max-
imum amount of information in computer science research
contributes to the advance of the area.

The main motivation for the development of SToCS are
the intriguing questions raised by the discrepancies between
HPT and other, more conventional, statistical frameworks,
such as the geometric mean of ratios used by SPEC.

The contributions of this work can be summarized as fol-
lows: 1) We conduct experiments similar to those performed
by the authors of the HPT test and verify that the distribu-
tion of the samples is indeed not normal. 2) We also experi-
ment with the test proposed by the authors and notice that
the conclusions that can be inferred from our experimental
results are conservative, when compared with the traditional
means. 3) We propose a tool that implements all these data
analysis and helps experimenters to report their results.

The remaining of the text is organized as follows: Sec-



tion 2 motivates the creation of SToCS by analyzing the
overhead of a binary translator. Section 3 presents issues
that are raised when summarizing performance scores. Sec-
tion 4 evaluates the HPT framework on a synthetic exper-
iment where the true means are known. Finally Section 5
presents our conclusions.

2. MOTIVATION

To motivate the discussion, we present an experiment
where we analyze the overhead caused by emulation in a
dynamic binary translator (DynamoRIO [4]) when running
SPECint 2006 using the Hierarchical Performance Test frame-
work (HPT) [7].

* Overhead using geometric me

= = Ny
o ul o
1 1 1
L]
L]
L]

HPT reported overhead (%)

[6)]
1

50 60 70 80 90 100
Confidence (%)

Figure 1: HPT reported overhead for a varying con-
fidence interval caused by the DynamoRIO binary
translator. Note that HPT reports a lower bound
for the overhead.

The quality of a DBT (Dynamic Bynary Translator) is
measured by its fitness to translate computer programs ef-
ficiently and transparently [3,10]. Figure 1 shows the em-
ulation overhead (slowdown) reported by HPT given differ-
ent confidence levels. The graph shows that the higher the
confidence level, the lower is what can be asserted about
the overhead. HPT uses Wilcoxon tests to determine lower
bounds on the differences between two systems. For exam-
ple, with a confidence level of 61%, the overhead is mo less
than 20.3%. Moreover, with a confidence level of 99%, we
can only assert that the delay added by emulation is no less
than 3.2%.

The outputs of the HPT framework are always accompa-
nied by confidence levels, on the other hand they report more
modest speedups in comparison with the geometric mean of
ratios (dashed line in Figure 1). We refer to this behavior as
“conservative”. The difference between the methods raised
the question about which of them we should use and moti-
vated the creation of a tool that aggregates several statistical
frameworks.

To help experimenters to report their performance number
we developed SToCS, a command line tool implemented in
Python that calculates several statistics of an experiment
and compares measurements between two computers using
different statistical frameworks. It processes CSV files to

calculate statistics such as arithmetic, geometric, harmonic
means, standard deviation, minimum and maximum values
of a given experiment. Furthermore, when two data files
are provided, the tool is able to compare the measurements
of the given files using different metrics such as the HPT-
speedup and the geometric mean of ratios (e.g. SPECrate)
[7,11]. The tool implements the HPT framework, which is
not available in conventional tools such as R [16]. R does
have the Wilcoxon tests that are used by HPT, but it does
not include the HPT framework itself.

3. SUMMARIZING COMPUTER PERFOR-
MANCE SCORES

This section describes issues that are raised when sum-
marizing performance scores, the consequences of making
wrong assumptions about data distribution, and the appli-
cability of the Central Limit Theorem (CLT) in computer
science experiments.

Confidence intervals can be used to represent the index
of dispersion of individual benchmarks provided that the
experimenter guarantees that the actual data distribution is
normal and techniques such as resampling are not used. But
even when this is the case, summarizing the overall perfor-
mance score of a computer across several benchmark appli-
cations with a single number can be misleading.

Figure 2 shows the individual execution time ratios in
Actina Solar 220 X3 system compared with the base system
defined by SPEC — data collected from SPEC.org. The dis-
crepancy observed in libquantum influences indexes of cen-
tral tendency in different ways. For example, in the ratio
of the arithmetic means, a single value has more influence
than in the geometric mean of ratios, which amortizes the
discrepancies in the summarized data.

800-
600-
i
T 400+
[ag
200-
0 - e e s ] e B s [ .
IQ 1 Io I‘\ I‘_ I\ 1 1 1 1 I« I‘_
& G.Q’D&rb § (§§° 6‘@@ é\&é&\@‘@ (\QZ\QQ (g.}’b do@
Sl S R ST S
» © W
Benchmark

Figure 2: Speedups for all SPECint 2006 applica-
tions for the Actina Solar 220 X3 system

On the other hand, Lilja [11] advocates that the geomet-
ric mean of ratios does not represent the performance metric
that we are ultimately interested in (i.e. shortest execution
time). He suggests using ratio of arithmetic means. Calcu-
lating the speedup of the Actina system relative to the base
system defined by SPEC (i.e. geometric mean of ratios) re-



sults in a value of 35.87 while using the ratio of arithmetic
means results in a value of 31.50.

3.1 Checking variability

We verify the hazard of assuming that computer data fol-
low a normal distribution in an experiment of 10000 exe-
cutions of the benchmark libquantum from the SPEC CPU
2006 suite and empirically show that the data distribution
may not be normal. Due to time constraints, we select the
test input subset of the libquantum and run the application
on an Intel Core 2 Quad at 2.4GHz with 4GB RAM.

Figure 3 shows the probability density function gener-
ated by Naive Normality Fitting (NNF) — bell curve line
— and Kernel Parzen Window (KPW) — line above the gray
area. The NNF technique assumes a normal distribution
and plots the conventional bell curve, while KPW displays
a smoothed picture of the actual distribution. Following
the same methodology presented by Chen et al. [7], we vi-
sually compare the plots against each other and determine
that the data do not follow a normal distribution. We also
apply Lilliefors test (Kolmogorov-Smirnov test) [12] on the
measurements and confirm that they were not taken from a
population that follows a normal distribution.

:Sample Mean

o
@

o
@

o
i

Probability Density

o
i

55 60 65 70
Execution Time (ms)

Figure 3: Probability density function for the test
input of libquantum running on an Intel Core 2
Quad at 2.4GHz with 4GB RAM

Our result complies with those obtained by Chen et al. [7],
which has shown that computer science experiments can eas-
ily happen to be non-normal. In these cases, parametric
techniques that assume a normal distribution of the actual
data (e.g. confidence intervals) should not be used. We
advise that experimenters check if the sample distribution
conforms with the normal before using any statistical frame-
work. In this sense, SToCS implements a statistical frame-
work to check the normality of the distribution by applying
Lilliefors (Kolmogorov-Smirnov) test on a sample.

3.2 Applicability of the Central Limit Theo-
rem

The Central-Limit Theorem (CLT) states that, even if the
data are not normally distributed, the distribution of the
sample means with a sufficiently large number of elements

can be safely approximated by a Gaussian [6]. However,
checking this approximation is usually neglected in computer
science experiments [7]. This section checks the applicability
of the CLT using the execution times of 1000 runs of the
TeraGen Hadoop workload [5] configured to create a 8 GB
HDF'S file. This benchmark is one of the key workloads that
are used in cloud deployments characterization [2,17]. Due
to its distributed nature, this environment presents large
variability.

We characterize the I/O of TeraGen on a cluster composed
of 10 AMD A8-3850 APUs which contains 4 CPU cores at
2.9 GHz, each with a 1MB L2 cache. Each node is configured
with 16GB of DDR3-1333 memory, 2 SATA HD (1 TB each
@ 7200 rpm) configured in RAID 0 mode, where each cluster
node is connected using a 1Gbit Ethernet switch running
Red Hat Enterprise Linux 6.2 and Hadoop 0.20.2.

SToCS splits the data set of 1000 points into m samples
of size n so that m x n = 1000. Then, it applies Lilliefors
test on the m sample means to check whether they were
taken from a normal distribution. The test shows that the
distribution of sample means follows a normal distribution
when n is greater than 60. Therefore, to provide a confi-
dence interval for the mean, the experimenter must have at
least 180 measurements to have 3 samples of 60 measure-
ments. Such large amount of measurements may require a
large amount of time to perform the experiments. This re-
sult corroborates the finds in Chen et al. [7], which reports
that computer science experiments may require large num-
ber of measurements to use CLT.

We emphasize that this result is specific for this bench-
mark. This large amount of measurements may not be re-
quired for other applications in order to use CLT.

4. SYNTHETIC DATA COMPARISON

So far, we have discussed different metrics to compare
computer performance. We have analyzed real computer
performance using ratios of arithmetic means, geometric
means of ratios, and the HPT framework. In this section, we
evaluate the behavior of these metrics using synthetic data
that comes from populations which have normal distribution
with known mean and standard deviation.

To create the synthetic data, we create two hypothetical
computers A and B, running at 2.4GHz and 2.9GHz, respec-
tively. We generate 10 benchmarks with a varying number
of instructions and define an IPC (instructions per cycle)
for each benchmark, b, on each computer, ¢. Using the IPCs
and the number of instructions of the benchmarks, we cal-
culated the execution time, ¢, . of each application on each
machine and generate 1000 samples with a normal probabil-
ity density function with mean ¢; . and standard deviation
tb,c/100. Table 1 presents these values.

We define, for this experiment, that the total execution
time of all applications is the metric that interest us, as
suggested by Lilja [11]. Since we generate the samples of
execution time with a normal probability density function,
we know the population mean, which is the true execution
time of each benchmark; hence, we also know the true ra-
tios between the total execution time on each computer.
By using SToCS to calculate the geometric mean of ratios,
the ratios of arithmetic means, and the HPT-speedup, we
evaluate which computer is faster when running the whole
benchmark suite. Then, we compare these metrics, shown
in Figure 4, with the expected values.



Table 1: Benchmark characteristics and IPCs for
hypothetical computers A (2.4GHz) and B (2.9GHz)

Bmk. | Number of IPC Time (s)

Instructions A B A B
a 9.770- 10" | 2.86 | 2.64 | 1423 | 1276
b 9.650- 10" | 3.04 | 0.69 | 1322 | 4822
c 8.050- 10" | 0.82 | 2.66 | 4090 | 1043
d 0.120-10™ | 1.46 | 2.44 | 2602 | 1288
e 10.490-10™ | 0.48 [ 1.28 | 9105 | 2825
f 9.330-10™ | 1.74 | 1.60 | 2234 | 2010
g 12.100-10™ [ 1.23 [ 1.00 | 4098 | 4172
h 20.720- 102 | 3.42 [ 2.37 | 2524 | 3014
i 22.130-102 [ 2.32 [ 1.12 | 3974 | 6813
j 6.250-10"° [ 1.58 | 1.15 | 1648 | 1874

| Total | 117.61-10"° | | | 33025 | 29142

Speedup

©

©
1

.

Metric

Figure 4: Performance comparison using different
metrics

As expected the sample geometric mean of the ratios and
the sample ratio of arithmetic means for the total execution
time are very close to the expected result (i.e. Computer B
is 1.13 times faster then Computer A). However, we point
that HPT might not be comparable to geometric mean of
ratios or to ratio of arithmetic means. HPT uses hypothesis
tests and, in this particular scenario, it is not able to infer
which computer is faster rendering the test inconclusive.

S. CONCLUSION

In this paper we propose SToCS, a tool that assists in the
analysis of experimental data by centralizing several statis-
tical frameworks. We used our tool to evaluate these tech-
niques and concluded that they present similar results.

Confidence intervals give an estimate of the precision of
measurements, but they require knowledge about the actual
distribution of these errors. This requirement does not apply
to HPT. On the other hand, the results obtained by this
tool indicate that it is conservative when compared to other
summarization techniques.

We conclude that publications in computer science should
include the maximum amount of information available and
that statements about the comparison of computers should
be as clear as possible, making it easier for readers to un-
derstand the choices and decisions of the authors.

6. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions to improve

this paper. They are also grateful to FAPESP, CNPq and
CAPES for their financial support.

7. REFERENCES

[1] American Physics Society. What is science?
http://www.aps.org/policy/statements/99_6.cfm.

[2] C. Bennett, R. L. Grossman, D. Locke, J. Seidman,
and S. Vejcik. Malstone: towards a benchmark for
analytics on large data clouds. In 16th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 2010.

[3] E. Borin and Y. Wu. Characterization of DBT
overhead. In Proceedings of the IEEE International
Symposium on Workload Characterization, 2009.

[4] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In
Proceedings of the International Symposium on Code
Generation and Optimization, 2003.

[5] J. Bughin, M. Chui, and J. Manyika. Clouds, big data,
and smart assets: Ten tech-enabled business trends to
watch, 2010.

[6] L. L. Cam. The central limit theorem around 1935.
Statistical Science, 1986.

[7] T. Chen, Y. Chen, Q. Guo, O. Temam, Y. Wu, and
W. Hu. Statistical performance comparisons of
computers. In Proceedings of HPCA-18, 2012.

[8] D. Citron, A. Hurani, and A. Gnadrey. The harmonic
or geometric mean: does it really matter? ACM
SIGARCH Computer Architecture News, 2006.

[9] P. J. Fleming and J. J. Wallace. How not to lie with
statistics: the correct way to summarize benchmark
results. Commun. ACM, 1986.

[10] J. D. Hiser, D. W. Williams, W. Hu, J. W. Davidson,
J. Mars, and B. R. Childers. Evaluating indirect
branch handling mechanisms in software dynamic
translation systems. ACM Transactions on
Architecture and Code Optimization, 2011.

[11] D. J. Lilja. Measuring computer performance: a
practiotioner’s guide. Press Syndicate of the
University of Cambridge, 2000.

[12] H. W. Lilliefors. On the kolmogorov-smirnov test for
normality with mean and variance unknown. Journal
of the American Statistical Association, 1967.

[13] Statistical Tool for Computer Science (SToCS).
http://lampiao.lsc.ic.unicamp.br/stocs/.

[14] J. R. Mashey. War of the benchmark means: time for
a truce. SIGARCH Comput. Archit. News, 2004.

[15] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F.
Sweeney. Producing Wrong Data Without Doing
Anything Obviously Wrong! In Proceedings of the
International Conference on architectural support for
programming languages and operating systems, 2009.

[16] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2008.
ISBN 3-900051-07-0.

[17] N. B. Rizvandi, J. Taheri, and A. Zomaya. On using
pattern matching algorithms in mapreduce
applications. In 2011 IEEE Ninth International
Symposium on Parallel and Distributed Processing
with Applications Workshops, 2011.



